

PDSketch Integrated Domain Programming, Learning, and Planning

Jiayuan Mao Tomás Lozano-Pérez Joshua B. Tenenbaum Leslie Pack Kaelbling MIT CSAIL

Factored Encodings for Environments

• Human can reason about *factored encodings* of the physical world.

Intuition:

- Factored encodings enable better data efficiency in learning.
- Factored encodings enable better planning efficiency.

MiniGrid Example

Existing Frameworks

Domain Programming

```
def facing(agent, object): ...
```

```
def move_forward(s):
if not any(
    facing(s.agent, x) and
    is_obstacle(x)
    for x in s.objects
):
    if s.agent.facing == 0:
        s.agent.x -= 1
    elif s.agent.facing == 1:
        s.agent.y += 1
    elif ...
```

Neural Network Learning

```
def move_forward(s):
s.agent = ??(s)
for i in range(n):
    s.objects[i] = ??(s)
```

?? : Trainable Neural Networks.

Minimal prior knowledge. A lot of training data. Slow planning.

A lot of prior knowledge. No/Minimal training data. Fast planning.

Existing Frameworks

Domain Programming

def facing(agent, object): ...

```
def move_forward(s):
if not any(
    facing(s.agent, x) and
    is_obstacle(x)
    for x in s.objects
):
    if s.agent.facing == 0:
        s.agent.x -= 1
    elif s.agent.facing == 1:
        s.agent.y += 1
    elif ...
```

PDSketch (This Work)

```
def move_forward(s):
if not any(
    ??(s.agent, x)
    for x in s.objects
):
    s.agent = ??(s.agent)
```

Neural Network Learning

```
def move_forward(s):
s.agent = ??(s)
for i in range(n):
    s.objects[i] = ??(s)
```

?? : Trainable Neural Networks.

A lot of prior knowledge. No/Minimal training data. Fast planning. Small amount of prior knowledge. Small amount of training data. Fast planning. Minimal prior knowledge. A lot of training data. Slow planning.

PDSketch: Integrated Programming and Learning

• • •

```
def move_forward(s):
if not any(
    ?f(s.agent, x)
    for x in s.objects
):
    s.agent = ?g(s.agent)
```

PDSketch: Integrated Programming and Learning

PDSketch: Integrated Programming and Learning

PDSketch: Integrated Programming and Learning

PDSketch: Integrated Programming and Learning

Back Prop

PDSketch: Integrated Programming and Learning


```
def move_forward(s):
if not any(
    ?f(s.agent, x)
    for x in s.objects
):
    s.agent = ?g(s.agent)
```


agent) Each ?? can be implemented as a neural network module.
The programmatic structures encode

- The sparse and local structures of modules.
- The lifted structures (parameter sharing) of modules.

PDS-Rob

Full robot movement models. Need to learn object classifiers.

PDS-Abs

Abstract robot models. (Sparse and local structures)

PDS-Base

Graph neural network. (Weakest prior)

PDS-Base

Learned

PDS-Abs

80

100

60

These sparsity and locality structures can be *easily specified* using a First-Order-Logic language (derived from PDDL).

PDS-Abs

Abstract robot models. (Sparse and local structures)

Success Rate

Behavior Cloning Decision Xformer DreamerV2 PDS-Base PDS-Abs

PDS-Abs Abstract robot models. (With Structures)

Success Rate

Very small amount of prior knowledge significantly improves the *data efficiency*.

PDS-Base PDS-Abs

PDS-Rob

Planning Efficiency

PDS-Abs Abstract robot models. (With Structures)

Success Rate	
Behavior Cloning	0.79
Decision Xformer	0.82
DreamerV2	0.79
PDS-Base	0.62
PDS-Abs	0.98
PDS-Rob	1.00

Planning Efficiency

The performance in model learning also translates to *better performance*.

PDS-Abs Abstract robot models. (With Structures)

Success Rate

The factored representation yields domain-independent heuristics which improves *planning efficiency*.

Planning Efficiency

Generalization to Continuous Domains and Unseen Goals

Trained on goals: $\exists x.y.color(x)\&color(y)\&rel(x, y)$ Positions, number of objects, colors vary.

∃x.y. purple(x) & yellow(y) & inbox(x) & inbox(y) & left-of(x, y)

 $\forall x. yellow(x) \& inbox(x)$

PDSketch: Integrated Domain Programming, Learning, and Planning Mao, Lozano-Pérez, Tenenbaum, Kaelbling. In *NeurIPS* 2022.

- A framework for combining programmatic structures and learning for model-based planning.
- Such structural priors can be flexibly specified and matches the structures in the physical world.
- Leveraging factored representations improves data efficiency.
- Factored representation supports automatically derived planning heuristics.
- https://pdsketch.csail.mit.edu