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Factored Encodings for Environments

Intuition:
• Factored encodings enable better 

data efficiency in learning.
• Factored encodings enable better 

planning efficiency.

• Human can reason about factored encodings of the physical world.



State Space:
s.agent = (x, y, facing)
s.objects[i] = (x, y, image)

Transition Model
def move_forward(s): ...
def rturn(s): ...
def toggle(s): ...
......

MiniGrid Example

Domain-Independent
PlannerState

Predicates
next_to(agent, object)
is_yellow(object)
is_box(object)
......

“Go to a red object”
∃x. is_yellow(x) & next_to(agent, x)Goal

Action
RTurn

Domain Model



Existing Frameworks

def facing(agent, object): ...

def move_forward(s):
if not any(
facing(s.agent, x) and
is_obstacle(x)
for x in s.objects

):
if s.agent.facing == 0:
s.agent.x -= 1

elif s.agent.facing == 1:
s.agent.y += 1

elif ...

A lot of prior knowledge.
No/Minimal training data.
Fast planning.

Minimal prior knowledge.
A lot of training data.
Slow planning.

def move_forward(s):
s.agent = ??(s)
for i in range(n):
s.objects[i] = ??(s)

Domain Programming Neural Network Learning

?? : Trainable Neural Networks.
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Domain Programming Neural Network LearningPDSketch (This Work)

def move_forward(s):
if not any(
??(s.agent, x)
for x in s.objects

):
s.agent = ??(s.agent)

Small amount of prior knowledge.
Small amount of training data.
Fast planning.

def move_forward(s):
s.agent = ??(s)
for i in range(n):
s.objects[i] = ??(s)



PDSketch: Integrated Programming and Learning

def move_forward(s):
if not any(
?f(s.agent, x)
for x in s.objects

):
s.agent = ?g(s.agent)

Agentt
(x=2, y=0, 
facing=3)

Objectst[0]
(x=3, y=1,
image=...)

Objectst[1]
(x=4, y=2,
image=...)

...
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Back
Prop

Predicted
Agent State

...
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Each ?? can be implemented as a neural network module.
The programmatic structures encode
• The sparse and local structures of modules.
• The lifted structures (parameter sharing) of modules.



Learning and Planning Efficiency

Full robot movement models.
Need to learn object classifiers.

Abstract robot models.
(Sparse and local structures)

Graph neural network.
(Weakest prior)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Rob PDS-BasePDS-Abs

PDS-Base
Learned
PDS-Abs
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Abstract robot models.
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DreamerV2 0.79
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PDS-AbsThese sparsity and locality 
structures can be easily specified 
using a First-Order-Logic language 
(derived from PDDL).



Learning and Planning Efficiency

Abstract robot models.
(With Structures)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

Very small amount of prior
knowledge significantly 
improves the data efficiency.
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The performance in model 
learning also translates to 
better performance.



Learning and Planning Efficiency

Abstract robot models.
(With Structures)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Abs

The factored representation 
yields domain-independent 
heuristics which improves 
planning efficiency.

PDS-Base
Learned
PDS-Abs



∃x.y. purple(x) & yellow(y) &
inbox(x) & inbox(y) & left-of(x, y) 

∀x. yellow(x) & inbox(x) 

Trained on goals: ∃x.y.color(x)&color(y)&rel(x, y) Positions, number of objects, colors vary.

Generalization to Continuous Domains and Unseen Goals



PDSketch: Integrated Domain Programming, Learning, and Planning

• A framework for combining programmatic structures and learning
for model-based planning.
• Such structural priors can be flexibly specified and matches the 

structures in the physical world.
• Leveraging factored representations improves data efficiency.
• Factored representation supports automatically derived planning

heuristics.
• https://pdsketch.csail.mit.edu

Mao, Lozano-Pérez, Tenenbaum, Kaelbling. In NeurIPS 2022.


